|
|
BIRD FAMILIES OF THE WORLD |
12th edition
last revised November 2012
this list has 234 extant families
|
|
The purpose of this list of Bird
Families of the World is as an aid to world birders who
want to maximize their enjoyment of avian diversity by observing examples
of as many bird families as is reasonable within the time and money
available for travel, and as a study tool for all interested
readers. It is exhilarating to see or learn about unique birds, and
bird families structure the avian world into the most discrete and
unique groups.
|
|
Some background: early editions of this list generally followed the Handbook of the Birds of the World (HBW) project but publication of the 3rd edition of Howard &
Moore's world checklist (Dickinson 2003), and then updated decisions of the IOC world checklist (Gill et al. 2012) and the Clements world checklist have been considered [full disclosure: I was a volunteer junior member of the Clements update team in 2011 & 2012]. John Boyd's Avian Taxonomy in Flux
has much additional information, including a world checklist (his
family list is also fairly close to this one, but with some
differences).
For this 12th edition,
the changes below bring my list to 234 extant families. I continue to
accept a few families not accepted by the either Clements, the IOC, or
Howard & Moore. I depart from Clements by elevating 10 groups as
Families that Clements does not currently accept [Magpie-goose,
Flufftails, Egyptian Plover, Whitehead & allies, Crested Bellbird
& allies, Shrike-vireos & Erpornis, Bristle-flycatchers,
Hylias, Parrotbills, and Cinnamon Ibon]. The current (Aug 2012)
Clements list has 227 families; the current IOC list has 228 families
(plus 6 incertae sedis). The ambiguity in the latter makes it difficult to compare that list.
|
HIGHTLIGHTS OF CHANGES in this 12th edition
Two new African families are recognized — Bristle-flycatchers [Erythrocercidae] and Hylias
[Hyliidae]— and both are tentative and provisional. Further information
is needed but it may be time to have these on our radar [I have not
accepted the proposed family Scotocercidae for Scrub Warbler Scotocerca inquieta (Fregin et al. 2012) because it does not appear to be either distinctive or sufficiently ancient]. One family is resurrected — Parrotbills
[Paradoxornithidae] — but otherwise there is a retrenching of families,
based upon the molecular evidence. In my 10th edition, Babblers
[Timaliidae] were split into 3 families, but evidence shows those three
clades to be comparatively young (e.g. diverged ~10-17 million years
ago while most families diverged more than 20 mya), and thus better
designated as subfamilies. New evidence supports lumping the vangid
radiation [vangas, helmetshrikes, woodshrikes, shrike-flycatchers,
flycatcher-shrikes and philentomas] into one family.
Net result: – 1 families
I have also re-sequenced
the order in which I list the Families to adopt changes in the AOU/SACC
sequence, with seriemas through parrots now following woodpeckers as
the sister group to passerines. Clements does so as well. My sequence
follows Clements (through 2012 update) except in the Sylvioidea
[Nicators through Bush-Warblers], in which I follow the sequence in
Fregin et al. (2012).
|
My listing is of extant
bird families. Clements and IOC include the recently described
Mohoidae, an endemic family from Hawaii that included 5 species in
genus Moho and one in genus Chaetoptila that had
traditionally been considered honeyeaters in the Meliphagidae. Genetic
evidence proved they were not honeyeaters, but that they were related
to silky-flycatchers, waxwings, and other bombycillids. The Mohoidae is
now extinct, so it is not possible to search for any
of its members. The last remaining species was Kauai Oo, last proven
alive in 1987, and now considered extinct. Thus, when comparing number
of families between various list, it is important to use the list of
extant families. Clements states this number explicitly; IOC apparently
does not. |
HIGHLIGHTS
OF CHANGES in the 7th, 8th, 9th, 10th and 11th editions follow the list of Families. New feature (added March 2012): a few selected species of uncertain affinities (find these links following the list of families).
|
|
This site is not affiliated with
the Handbook project but I highly recommend the books; click on
the banner below]
|
Those families with links have separate web
pages that I created over the years. Some are now dated and need
revision, but there are still some to create. Each page has photos taken
in the wild and extensive text.
|
|
|
|
|
|
Acanthisittidae New Zealand Wrens
[27] |
Artamidae Woodswallows [46] |
Pycnonotidae Bulbuls |
Calyptomenidae African & Green Broadbills [28] |
Cracticidae Butcherbirds & allies [46] |
Sylviidae Sylvids [65] |
Eurylaimidae Asian & Grauer's Broadbills [28] |
Pityriaseidae Bristlehead [47] |
Paradoxornithidae Parrotbills, Fulvettas & allies [65] |
Sapayoidae Sapayoa [29] |
Aegithinidae Ioras |
Zosteropidae White-eyes, Yuhinas & allies [65] |
Philepittidae Asities [28] |
Campephagidae Cuckooshrikes |
Timaliidae Babblers & allies [65] |
Pittidae Pittas |
Neosittidae Sittellas |
Phylloscopidae Leaf-Warblers [60] |
Thamnophilidae Typical Antbirds [29] |
Pachycephalidae Whistlers, Shrike-Thrushes, Shrike-tit &
allies [48] |
Aegithalidae Long-tailed Tits |
Melanopareiidae Crescentchests [30] |
Laniidae Shrikes |
Hyliidae Hylias [66] |
Conopophagidae Gnateaters |
Pteruthiusidae Shrike-Babblers & Erpornis [49] |
Erythrocercidae Bristle-flycatchers [67] |
Grallariidae Antpittas [31] |
Vireonidae Vireos & Greenlets [50] |
Cettiidae Cettids: Bush-Warblers, Stubtails, Tesias & allies [60, 67] |
Rhinocryptidae Tapaculos |
Oriolidae Old World Orioles, Figbirds & true Pitohuis [48] |
Promeropidae Sugarbirds & allies [68] |
Formicariidae Antthrushes [31] |
Dicruridae Drongos |
Irenidae Fairy-Bluebirds |
Furnariidae Ovenbirds, Miners, Leaftossers & Woodcreepers [32] |
Rhipiduridae Fantails |
Hyliotidae Hyliotas [69] |
Tyrannidae Tyrant Flycatchers |
Monarchidae Monarchs & allies, including magpie-larks [51] |
Muscicapidae Old World Flycatchers & Chats [70] |
Oxyruncidae Sharpbill [33] |
Corvidae Crows, Jays & allies |
Turdidae Thrushes |
Cotingidae Cotingas |
Corcoracidae Apostlebirds |
Mimidae Thrashers & Mimids |
Pipridae Manakins |
Paradisaeidae Birds-of-Paradise |
Sturnidae Starlings, Mynas & Rhabdornises
[71] |
Tityridae Tityras, Becards & allies [34] |
Petroicidae Australo-Papuan Robins |
Buphagidae Oxpeckers [72] |
Menuridae Lyrebirds |
Picathartidae Rockfowl [52] |
Chloropseidae Leafbirds |
Atrichornithidae Scrub-birds |
Chaetopidae Rockjumpers [52] |
Dicaeidae Flowerpeckers |
Ptilonorhynchidae Bowerbirds [35] |
Eupetidae Rail-babbler [52] |
Nectariniidae Sunbirds & Spiderhunters |
Climacteridae Australasian Treecreepers |
Regulidae Kinglets [53] |
Prunellidae Accentors |
Maluridae Fairywrens & Grasswrens |
Stenostiridae Fairy Flycatchers
[54] |
Motacillidae Pipits & Wagtails |
Meliphagidae Honeyeaters & allies, including Australian chats [36] |
Paridae Tits
& Chickadees [55] |
Urocynchramidae Przevalski's Rosefinch [Pink-tailed Bunting] [73] |
Dasyornithidae Bristlebirds [37] |
Remizidae Penduline Tits |
Bombycillidae Waxwings |
Pardalotidae Pardalotes [37] |
Sittidae Nuthatches |
Ptilogonatidae Silky-flycatchers |
Acanthizidae Australo-Papuan Warblers [37] |
Tichodromidae Wallcreeper [56] |
Dulidae Palmchat |
Pomatostomidae Pseudo-babblers |
Certhiidae Treecreepers |
Hylocitreidae Hylocitrea [74] |
Orthonychidae Logrunners |
Troglodytidae Wrens |
Hypocoliidae Hypocolius [75] |
Cnemophilidae Satinbirds [38] |
Polioptilidae Gnatcatchers |
Peucedramidae Olive Warbler [76] |
Melanocharitidae Berrypeckers &
Longbills [39] |
Cinclidae Dippers |
Calcariidae Longspurs & Snow Buntings [77] |
Paramythiidae Painted Berrypeckers [39] |
Nicatoridae Nicators [57] |
Parulidae New
World Warblers |
Callaeidae New Zealand Wattlebirds |
Panuridae Bearded Reedling [58] |
Thraupidae Tanagers [78] |
Notiomystidae Stitchbird [40] |
Alaudidae Larks |
Emberizidae New World Sparrows & Old World Buntings |
Mohouidae Whitehead & allies [41] |
Macrosphenidae Crombecs & African Warblers [59] |
Cardinalidae Cardinals, Grosbeaks & allies [79] |
Psophodidae Whipbirds & Wedgebills [42] |
Cisticolidae Cisticolas & allies |
Icteridae Icterids |
Cinclosomatidae Quail-Thrushes & Jewel-Babblers [42] |
Locustellidae Grassbirds & allies [60] |
Fringillidae Finches [80] |
Oreoicaedae Crested Bellbird & allies [43] |
Donacobiidae Donacobius [61] |
Hypocryptadiidae Cinnamon Ibon [81] |
Platysteiridae Batises, Wattle-eyes & allies |
Bernieridae Malagasy Warblers [62] |
Passeridae Old World Sparrows |
Vangidae Vangas, Helmetshrikes, Woodshrikes & allies (vangids) [44] |
Pnoepygidae Cupwings [63] |
Ploceidae Weavers |
Malaconotidae Bush-Shrikes |
Acrocephalidae Reed-Warblers & allies [60] |
Estrildidae Waxbills, Munias & allies |
Machaerirhynchidae Boatbills [45] |
Hirundinidae Swallows & Martins [64] |
Viduidae Whydahs & Indigobirds |
|
NEW FEATURE: web pages on selected species of uncertain affinities
|
NEW
An essay on
Defining a Bird Family [Nov 2012]
The
concept of a bird Family has no universal definition and can be
arbitrary. We are reaching the point at which most birds on earth have
been studied genetically, and there is an evolving consensus about
their relationships. I suspect most major "surprises" about
phylogenetic relationships are behind us.
An
emerging issue is how to define a bird Family after an accepted
phylogeny of a group has been determined, particularly among the
passerines. For example, when it was shown that Olive-flanked Whistler Hylocitrea bonensis
of Sulawesi was not a whistler but was instead a relict bombycillid
related to waxwings, silky-flycatchers, Palmchat of Hispaniola, and
Hypocolius of the Middle East, the authors of that groundbreaking paper
[Spellman et al. 2008] recommended that each of these be considered a subfamily of an enlarged Bombycillidae. Yet all recent world checklists prefer to split Hylocitrea into its own Family,
consistent with prior treatments of silky-flycatchers, Palmchat, and
Hypocolius. I agreed with that approach — each lineage is so unique and
so ancient as to warrant Family status, at least among Passerine
families. [There is evidence that diversification rates differ among
bird lineages (e.g., Jetz et al. 2012) and standards that may apply to
Passerines may not be applicable to the older non-passerine lineages,
let alone other types of fauna (e.g., some crocodiles may have remained
pretty much unchanged for 55 million years). This essay applies only to
Passerines.]
This year two
major papers reviewed the phylogeny of the babblers: Moyle et al.
(2012), focusing on the babbler lineages, and Fregin et al. (2012),
reviewing a wider set of Sylvioidea [Old World warblers & allies]
that included babblers. Just two years ago, Gelang et al. (2009) had
outlined a "two family" approach to the relationships among the
babblers and sylvids: sylvid babblers and parrotbills [Sylviidae] and
babblers (Timaliidae]. Cibois et al. (2010) outlined a "five family"
approach to the same phylogenic findings: sylvid babblers and
parrotbills [Sylviidae], white-eyes [Zosteropidae], tree babblers and
scimitar-babblers [Timaliidae], fulvettas and ground-babblers
[Pellorneidae], and laughingthrushes [Leiothrichidae]. This "five
family" concept was adopted by several world checklist (e.g., Clements,
IOC) and by me in the 10th edition of this list. This year, both Moyle
et al. (2012) and Fregin et al. (2012) confirmed the relationships
shown by molecular analysis and recognized these five major "clades,"
but differed in their approach to setting Family level status. Fregin
et al. (2012) adopted the "five family" concept (and then added two
more families split off from Cettiidae), but Moyle et al. (2012)
expressed a preference for a "three family" approach to the babblers:
sylvid babblers and parrotbills [Sylviidae], white-eyes [Zosteropidae],
and babblers [Timaliidae]. In their proposal, the three clades of
"core" babblers become subfamilies of a single babbler Family: subfamilies Timaliinae, Pellorneinae, and Leiothrichinae.
I
now think that Moyle et al's (2012) approach is the best one. The
evidence of evolutionary relationships has not changed — it is just a
matter of where to draw the lines around "clades." Each approach to the
babbler/sylvid problem is "correct" — whether 2 families, 3 families,
or 5 families — because in each proposal the families are monophyletic
groups of related birds. It is simply a matter of preference.
I
have evolved a preference for Family level taxa to be (a) distinctive
and diagnosable and (b) to have been evolving on their own evolutionary
path since at least the early Miocene (i.e., 16-23 mya). I don't
advocate drawing any hard lines as to how old a clade must be for
Family status — indeed, many lineages of birds appear to be
diversifying at different rates — but younger monophyletic lineages may
be better addressed as subfamilies. Families should be ancient and
distinctive. In the babbler situation, the core babblers split from the
White-eyes and relatives at about 16–21 mya (Moyle et al., 2012). The
three main clades of the core babblers — the tree-babblers, the
laughingthrushes, and the ground-babblers — began diverging 11.2–17.8
mya (Moyle et al. 2012). It seems wiser to consider those clades as
subfamilies. Otherwise, the concept of distinctive families becomes
diluted. Further, there are fulvettas scattered among both the
Leiothrichinae and among the parrotbills; there are "wren-babblers"
assigned to two Babbler subfamilies (not to mention those now in the
Pnoepygidae, now called Cupwings); and there are "scimitar-babblers"
assigned to two different subfamilies. It is essentially impossible to
define the Babbler subfamilies except by their molecular relationships.
Keeping all the "core" babblers together in one family is a good
practical solution.
My
tentative addition to this discussion is to rethink the Sylviidae
situation. There are two major divisions (clades) within the Sylviidae
— the core sylvids (essentially the genus Sylvia and close
relatives) and the parrotbills & allies. While neither Moyle et al.
(2012) nor Fregin et al. (2012) addressed this situation, the
information provided in their cladograms supports the impression that
these two divisions split about 20 mya and have been evolving
separately since then. Voelker & Light (2011) explicitly determined
the divergence of the Sylvia clade from parrotbills &
allies at ~20mya [19.4 mya for extant lineages.] Accordingly, applying
the same standards, I have tentatively restricted Sylviidae to the
"core" sylvids, and resurrected the family Paradoxornithidae for the
parrotbills & allies (including Wrentit Chamaea fasciata of the New World).
|
|
|
HIGHTLIGHTS OF CHANGES in the 11th edition
1 new family:
Sharpbill [Oxyruncidae] — recent genetic evidence still shows its
position to be uncertain, so it seems best to revive this 'traditional'
family for the present. I also added Erpornis to the Shrike-babbler
family [Pteruthiusidae], a "new" family I adopted last edition.
By
far the most pleasant news this year has been the decisions of both the
AOU and SACC, and of the Clements checklist update, to elevate Sapayoa
to Family level by splitting
Broadbills into two families, allowing them also to retain Asities as a
family. This is consistent with their decisions in the barbet/toucan
situation. My list on this web page took that position back in 2006,
based on the evidence in the published literature.
|
HIGHLIGHTS
OF CHANGES in the 10th edition
7 new families:
Babblers split into five families (which adds 3 more: Laughingthrushes,
Fulvettas & Ground-Babblers, and White-eyes, Parrotbills &
allies); plus Egyptian Plover in north Africa; Whiteheads in New
Zealand; Shrike-Babblers (genus Pteruthius) in south Asia; and Cinnamon Ibon (genus Hypocryptadius) in the Philippines.
1 family lumped: Rhabdornis (a Philippine endemic family) is now lumped into Starlings (Sturnidae)
Net result: +6 families |
HIGHLIGHTS
OF CHANGES in the 9th edition
- 5 new families: Flufftails, Woodshrikes, Crested Bellbird & allies, Olive-flanked Whistler (genus Hylocitrea), Cupwings (genus Pnoepyga)
- 10 families lumped:
Terns and Skimmer (both now with gulls in Laridae); Eared-Nightjars
(with Nightjars); Asian Frogmouths (with Australian Frogmouths);
Kingfishers (3 clades merged into one); Erpornis (with Vireos); and
Shrike-thrushes, Shrike-Tits, & most Pitohuis (merged with
Whistlers; two Pitohuis to Old World Orioles)
Net result: –5 families |
HIGHLIGHTS OF
CHANGES IN THE EIGHTH EDITION: Primarily, these are the addition of new families from the new
Australian checklist (Christidis & Boles 2008), and two from the Neotropics:
- add New Zealand parrots [Nestoridae] as a family, split from the parrots [Psittacidae]
- split
Kingfishers into 3 families [Alcedinidae, Cerylidae, Halcyonidae] —
this split had previously been adopted by Sibley & Monroe (1990);
there is no doubt there are three monophyletic groups among the
kingfishers (Moyle 2006)
- split
Eared-Nightjars [Eurostopodidae] from the other Nightjars
[Caprimulgidae]; this had also been initially advanced by Sibley &
Monroe (1990)
- follow SACC
in splitting the Ground Antbirds [Formicariidae], which itself is a
fairly recent split from the Typical Antbirds [Thamnophilidae], into
two families: Antthrushes [Formicariidae], restricted to the genera Formicarius and Chamaeza,
and Antpittas [Grallariidae], which encompasses all but two species
called "Antpitta." Those two, in genus Pittasoma, were tentatively
assigned to the Gnateaters [Conopophagidae]. The two Pittasoma
antpittas do not look or behave like gnateaters, so it is possible
their status will change in the future (maybe their own family?)
- follow SACC in splitting the Crescentchests [Melanopareiidae] as a separate family from Tapaculos [Rhinocryptidae]
It
seems appropriate to follow the first three of these decisions since they affect
Australasia more than elsewhere. Christidis & Boles (2008) also
adopted most (but not all) of the family level changes in Dickinson
(2003) and the splits of the Old World Warblers advanced by recent
papers (e.g., Jønsson & Fjeldså 2006, Alström et
al. 2005). |
|
HIGHLIGHTS OF
CHANGES IN THE SEVENTH EDITION:
All are outlined below, but the most important impact has
been the Break-Up of
the Old World Warblers [see an explanation on the 3
web pages that begin at that link]. Here are all the changes:
- All the HBW families that have been
published to date [through Vol. 10] remain except those that
new research confirms should be lumped, representing a loss of three previous families. These are:
- Grouse and turkeys are
embedded within the Phasianidae so they are now lumped with
pheasants & allies.
- Woodcreepers are lumped with Furnarids on genetic evidence.
- Genetic evidence reveals that the Old
World Warblers ["Sylviidae"] represent at least 8-10 or more
distinctive lineages; Alström et al. (2006) proposed formal Family
names for five of these: Cisticolidae [Cisticolas,
Prinias & Allies; this split had been accepted previously], Megaluridae [Grassbirds & Allies, which include the Bradypterus & Locustella warblers], Acrocephalidae [Acrocephalus & Hippolais warblers], and Phylloscopidae [Phylloscopus & Seicercus warblers]. Further, the Sylvia warblers prove to be closely
related to the Babbler assemblage [Timaliidae]. The suppression
of "Sylviidae" as a usable taxonomic term must amount action by the
ICZN. However, for the moment, I retain "Sylviidae" for Jønsson
& Fjeldså's (2006) "clade 12;" Sylvia warblers, parrotbills,
some babblers, and Wrentit. Alström et al. (2006) would
apparently lump "clade 12" and "clade 13" (the other babblers) together
in one huge Timaliidae, but for the moment I separate the two sets of
lineages.
- Some of these changes within the old
"Sylviidae" were anticipated; other studies (e.g., Barker et al. 2002,
2004, Cibois 2003) showed that the Parrotbills ["Paradoxornithidae"]
and White-eyes ["Zosteropidae"] were actually Babblers. The Babblers
now include most of the usual babblers & laughing-thrushes plus
most Parrotbills and most White-eyes — so the gain of 4 new
'warbler' families in Alström et al. (2006) is offset by
the loss of 2 families (White-eyes, Parrotbills)
- Splitting the Old World Warblers into
new families still left several apparent lineages unresolved. For our
current listing, I have given names to "clade C" of Alström et al.
(2006): the Sylviettidae [Crombecs & African warblers], a
group described recently by Beresford et al. (2005). Then there is the
question of how to deal with lineages that evolved long ago within the
Megaluridae clade. One of those is Donacobius ("Black-capped
Mockingthrush") of South America — an ancient offshoot of this group
(Barker 2004, Alström et al. 2006). Some prefer to include Donacobius within the Grassbirds to emphasize its closest relatives, but it has
evolved in isolation for so long that I think it should be considered
it own family [Donacobidae], consistent with the treatment of
other similar situations (for example, the A.O.U. treats the Olive
Warbler as a family, although its closest relatives are the Accentors).
In addition, Cibois et al. (1999, 2001) showed that there was a
distinct radiation warbler-like birds Madagascar eons ago. For the
moment, I call them the Bernieridae [Malagasy Warblers]
- The 5 new Australasian families added
by Dickinson (2003) remain. They were all included in my 6th ed., so no
change there. Likewise, all the new studies confirm that Oxpeckers are
not closely related to Starlings (e.g., Cibois & Cracraft 2004,
Jønsson & Fjeldså 2006, Zuccon et al. 2006), supporting my split of
the Buphagidae in prior editions
- The South American Checklist Committee
has elevated Magellanic Plover [Pluvianellidae],
Toucan-Barbet [Semnornithidae], and the Tityridae to family rank, and so do I (Sharpbill is included in the Tityridae in my list).
- Publications in 2007 provided convincing
evidence that Stitchbird Notiomystis cincta of New Zealand
(Driskell et al. 2007) and Rail-babbler Eupetes macrocerus of
southeast Asia (Jønsson et al. 2007) are not related to the
families in which they have traditionally been placed (Honeyeaters and
Jewel-babblers, respectively). Instead, Stitchbird is most closely
related to New Zealand Wattlebirds but diverged many million years
ago; it has been formally proposed as its own family Notiomystidae (Driskell et al. 2007). Rail-babbler is most closely related to
Rockjumpers and Rockfowl of Africa — an ancient relic. Given the long
divergence of these three groups, it seems most consistent to consider
each a separate family, so Rail-babbler would become the Eupetidae.
This change means that the Whipbirds, Wedge-bills and Jewel-Babblers
become the Psophodidae. [Later, Jewel-Babblers were transferred to
Cinclosomatidae; Norman et al. (2009)].
In
additional to all of the above — which represents a net gain of 4
Families from my 6th edition family listing — the publication of
Jønsson & Fjeldså (2006) gives a good picture of the
future. They created a "supertree" of oscine passerine relationships
based on an analysis of 99 genetic studies of the passerines, the
largest group of birds. A clade represents a distinct evolutionary
lineage. Most lineages fall into one of four larger groups: Corvida (a
whole bunch of families that arose in Australasia, including crows),
and then the three groups at the end of our listings: the Sylvoidea,
Muscicapoidea, and Passeroidea. Together there were 42 families in
these 3 groups in my 6th ed. list. One of these, the Regulidae
(Kinglets) is actually an independent lineage not within any of the 3
big groups. So are the Rockfowl, the Rockjumpers, Australian Robins,
and, surprisingly, the genus Hyliota from
Africa. Using that work, I make a "best guesstimate" of future
family-level split that will ease us towards this eventual transition.
Some of my innovations will likely turn out to be wrong (and certainly
some Latin names for families will change) but I prefer to look
forward. There is travel to be done and I don't want to overlook
potential new families!
The most important innovation in this 7th
edition is this:
-
I assign family rank to every clade recognized by Jønsson &
Fjeldså (2006), with one exception. It seems apparent that most
of these independent lineages deserve family rank. Jønsson &
Fjeldså (2006) have 40 clades within Sylvoidea, Muscicapoidea,
and Passeroidea. These clades often confirm what are traditional
families: larks, swallows, dippers, weavers, and many others. But parts
of some current families (e.g., tanagers) appear in 7 different clades.
In other situations, what we consider to be separate families are in
the same clade. Among those examples are Starlings and Thrashers, or
the fact that Wrens, Nuthatches, and Gnatcatchers are all in the same
clade. So there are more families than clades. It follows, logically,
that, at a minimum, each clade should represent one or more families.
Alström et al. (2005) have recognized this and proposed formal
family names for five clades in the breakup of the Old World
Warbler-Babbler group, as discussed above. This brings some
surprises:
- Hyliotas become a family [see
Fuchs et al. 2006]
- certain African & Asian
flycatchers [Fairy Flycatchers & Allies] become a family
[Stenostiridae; as proposed by Beresford et al. 2005]
- Nicators become a family
[proposed by Beresford et al. 2005]
- Longspurs & Snow Buntings become a Family [the A.O.U. is awaiting more research before taking
this step, I'm told]
- Bearded Reedling Panurus
biarmicus has a separate evolutionary lineage and so, for the
moment, is assigned as a family
- the enigmatic Pink-tailed Bunting Urocynchramus pylzowi is in a
separate clade and thus, logically, a new Family (for the moment; see
Groth 2001)
- Erpornis zantholeuca (White-bellied
'Yuhina') of Asia is the only Old World representative in a clade
with New World vireos (see Cibois 2003, Alström et al. 2006); like
Donacobius and Olive Warbler, I tentatively treat it as a Family-level
taxon
- There is one exceptions to the
clade-based approach grounded in Jønsson & Fjeldså
(2006). In the Passeroidae, clades 13 through 19 of Jønsson &
Fjeldså (2006) are a monophyletic grouping of various tanagers,
seedeaters, saltators, and Plushcap. To not get too far ahead of
ourselves, it seems best to retain all these groups within the single
family Thraupidae (Tanagers & Allies). This still remains a
monophyletic group. Birders should be aware, however, that the North
American tanagers in the genus Piranga are not in any of these
clades; rather, the Piranga tanagers (e.g., Scarlet, Summer,
and Western Tanagers) are allied with the cardinals and grosbeaks in
family Cardinalidae.
- Relying on new biochemical evidence
(Moyle et al. 2006a), the Broadbills are split into two families — the
Calyptomenid Broadbills and the Eurylaimid Broadbills — which permits
us to maintain the Asities and the Sapayoa as families [a conservative
approach would lump them all in one huge Broadbill assemblage]
- Finally, I apply this same approach —
lineages that are unequivocally long separated from each other,
equivalent to the passerine clades, should be Families — to
non-passerines. On these grounds I revive the Sibley & Monroe
(1990) split of the two frogmouth lineages into two Families: Podargidae [Australasian Frogmouths] & Batrachostomidae [Asian
Frogmouths]
Some of these changes were anticipated in my 6th ed. listing. The net
effect of the approach in this 7th edition is to recognize a total
of 227 families, an increase of 9 over my 6th edition. |
|
FOOTNOTES
|
1 All
recent sources agree that there are two major basal lineages:
Palaeognathae (ratites and tinamous) and Neognathae (all others).
Within the Paeaeognathae, Dickinson (2003) places Tinamiformes before
Struthoniformes but both HBW, SACC, and new Clements have the opposite
arrangement. Since a 'tree of life' phylogeny of birds is
three-dimensional, there are multiple 'correct' ways to represent the
evolutionary tree in a two-dimensional list. I have resequenced all the
families on my list to follow the 2011 update of Clements' world
checklist, which relies heavily on the AOU and SACC approach to
sequencing the list. [This has no effect on what I decide to list as a
family.]
2 Within
the Neognathae there are also two basal lineages: Galloanserae
(gamebirds and waterfowl) and Neoaves (all others). This means that the
gamebirds and waterfowl must be placed next in the list (after ratites
and tinamous); this was recently done in the AOU checklist (2002).
Whether gamebirds (megapodes through quail) or waterfowl (screamers
through ducks) are listed next is a matter of style. Dickinson (2003)
puts the gamebirds first but AOU and SACC put the waterfowl first, and
this fits better with the traditional arrangement (as in HBW). As noted
in footnote 1, I now follow Clements' updated sequence throughout.
3 Splitting
the Magpie-Goose as a separate family is a Sibley-Ahlquist (1990)
innovation based on DNA hybridization; they also split the
Whistling-Ducks [Dendrocygnidae] as a family. Dickinson (2003) elevates
Magpie-Goose to family status but not the Whistling-Ducks; this was
supported by Livesey (1997). SACC and AOU also do not elevate the
Whistling-Ducks (at least for now).
4 Dickinson
(2003) and AOU (1998) consider turkeys and grouse to be subfamilies of
Phasianidae, as the biochemical evidence shows these lineages are
embedded within the larger pheasant/partridge assemblage (e.g.,
Dimcheff et al. 2002). In prior lists I had followed HBW in retaining
each group as a 'traditional' family, each of which is easily
recognized and each of which is a monophyletic group. Now I have
followed the recent evidence, and merge turkeys and grouse into the
Phasianidae. I have given them separate 'subfamily' web pages, though,
for convenience.
5 Grebes and flamingos are each others closest relatives; IOC, AOU, SACC all agree.
6 Christidis
& Boles (2008) split the storm-petrels into two families:
Hydrobatidae (northern storm-petrels) and Oceanitidae (southern
storm-petrels). Most others (e.g., SACC) consider these two lineages to
be subfamilies. The Christidis & Boles (2008) approach relied
heavily on Nunn & Stanley (1998) and Penhallurick & Wink
(2004), which argued that the storm-petrels were not monophyletic when
compared to albatrosses (Diomedeidae). Penhallurick & Wink (2004)
has been the subject to compelling criticism (Rheindt & Austin
2005), and the entire system of attempting to date divergence is
flawed (Graur & Martin 2004). Thus I do not split the storm-petrels
at this time. It seems best to await a worldwide consensus on the
families within the Procellariiformes.
7 AOU (1998),
Sibley & Ahlquist (1990), and Sibley & Monroe (1990) put
the New World vultures with storks. This was based primarily on early
DNA evidence but, as Joel Cracraft says in Dickinson (2003), "the
evidence supporting the various alternative hypotheses has not been very
compelling." Morphological evidence (e.g., Griffiths 1994) supports the
traditional placement of the catharids within the Falconidae.
8 Dickinson (2003)
reduces Secretarybird to a subfamily of the Accipitridae without any
comment. Yet even Sibley & Monroe (1990) continued family status,
as did the Birds of Africa handbook (Brown et al. 1982) and, more
recently, HBW and Clements. To me this is an "obvious" family — an exceptionally
unique and distinctive species that deserves its traditional family
rank, as it is not embedded within other lineages.
9 Osprey has been treated
as a subfamily of the Accipitridae by many (e.g., Sibley & Monroe
1990, AOU 1998, Dickinson 2003) but I follow HBW in retaining
traditional family status. The footnote on the SACC web site says
"Although all available data indicate that it is the sister taxon to
the hawks and eagles, the rank at which it is treated is rather
arbitrary. Given its unique karyotype, which differs from that known
for other hawks and eagles, and given that Pandion haliaetus can be recognized as a species in the fossil record as far back as the
Miocene, family rank may be more appropriate." To continue to give
Pandionidae family status also fits well with my belief that
distinctive and unique genera are often best handled as monotypic
families.
10 Recent
work by Hackett et al. (2008) shows the Gruiformes are an artificial
assemblage, and should be restricted to flufftails, finfoots, rails,
trumpeters, cranes, and Limpkin.
11 Work
by Hackett et al. (2008) suggests that Flufftails are distinct from
rails; IOC now raises them to family level. . My list tentatively
follows IOC in this family-level issue, but more research is needed.
12 It has been contended that Plovers should be split into two Families:
13 The taxonomic status of
Magellanic Plover Pluvianellus socialis is uncertain. Sibley
& Monroe (1990) and Sibley 1996) considered it a monotypic family
on initial DNA hybridization results, but admitted their conclusion was
to stimulate further research, rather than a well-supported decision.
Strauch (1978) and Chu (1995) used an analysis of morphological
characters to argue that it was more closely related to the Chionidae
than in its traditional place among the plovers [Charadriidae]. Recent
genetic data (Paton et al. 2003) support this relationship. SACC (2006)
now considers this a monotypic family. Dickinson (2003) provisionally
includes Magellanic Plover within the Chionidae, but both Clements and IOC consider it a full family.
14 Buttonquails are in the Charadriiformes (Hackett et al. 2008).
15 IOC
now places Egyptian Plover in a monotypic family: "It is a separate
lineage that is the outgroup to plovers, ibisbill, stilts and their
allies (Hackett et al. 2008). Therefore separated here to its own
family tentatively named Pluvianidae."
16 Although
I prefer the traditional
approach of gulls, terns, and skimmers in separate families, as each
group is distinctive in the
field, I now follow AOU (1998) and many others in lumping all within
the Laridae. Recent evidence suggests terns and skimmers are embedded
within the Laridae, e.g., Baker et al. (2007).
17 To quote a footnote in
the SACC: "The placement of this order [Opisthocomiformes] is highly
controversial. Genetic data have indicated that it is closely related
to the Cuculiformes (Sibley & Ahlquist 1990) or Musophagiformes
(Hughes & Baker 1999). De Queiroz and Good (1988) found
morphological evidence consistent with its placement near Cuculiformes
or Musophagiformes.... However, the most recent genetic analysis
(Sorenson et al. 2003) failed to find support for a relationship to any
of these groups, but found weak support for a relationship to the
Columbiformes." Dickinson (2003) also takes the approach used by SACC:
Hoatzin is placed just before the Cuculiformes. I now follow them, as does Clements;
there is no support for the HBW sequence that places it near Gruiformes.
18 Sibley & Monroe
(1990) split the cuckoos into four families — based on DNA divergence —
but most other recent checklists continue to place them all (Old World
cuckoos, New World cuckoos, anis, and ground-cuckoos) within a single
family [Cuculidae]. This is the approach of AOU, SACC, HBW,
Dickinson (2003), and Clements.
19 Sibley
& Ahlquist (1990) and Sibley & Monroe (1990) split frogmouths
into two families: Australian frogmouths [Podargidae] and Asian
frogmouths [Batrachostomidae]. Neither HBW nor Dickinson (2003) follow
this approach — they consider the two different sets to be subfamilies.
However, Holyoak (2001) acknowledges that they differ not only
biochemically, but also in nest structure, and could be separate
families, and that split is implied in Christidis & Boles (2008).
My personal experience suggests that they are two different sets of
birds, so while one could go either way, I lean toward the split. The
IOC (2009) list does not split them because of the discovery of Rigidipenna inexpectatus,
but surely it is more closely related to one of my families, even if we
don't know which one yet. For the moment I continue to merge them,
following most of the world checklists.
20 Having
split the two frogmouths into families, as suggested initially by
Sibley & Ahlquist (1990), one must question whether to do the same
with the nightjars, as Sibley & Ahlquist (1990) also split the
Eared-Nightjars from the rest of the caprimulgids. Christidis &
Boles (2008) summarize recent molecular studies that found
eared-nightjars to be the sister group to the rest of them, but the IOC
(2009) did not consider them of equal rank to other family-level
groups. I have waffled on this before, and merge them with Nightjars
again.
21 Sibley
& Monroe (1990) divided the kingfishers into three families
[Alcedinidae, Dacelonidae, and Cerylidae] but most major
checklists (HBW, Dickinson 2003) consider these groups to be
subfamilies. Christidis & Boles (2008) reviewed the evidence, and
adopted the three-way split. Since this change affects Australasia much
more heavily than the New World, I followed the approach
of Christidis & Boles (2008) for half-a-year. Now I switch back to
the mainstream, as the IOC list points out that the while the "three are reciprocally monophyletic groups [they] ... are not the same rank as the other families in the Coraciiformes."
22 This web-based
checklist had elevated the Ground-Hornbills to family rank several
editions ago, following the persuasive argument by Kemp (1995), and the
arrangement of Sibley & Monroe (1990). HBW did not do so, even
though Alan Kemp authored the family account for all hornbills (a case
where editorial preference trumped the author of the family account). It
is thus very encouraging to find that Dickinson (2003) also elevates
the Ground-Hornbills to family status, and in 2012, so did Clements.
23 Biochemical evidence
supports the concept that jacamars and puffbirds are sister groups, but
whether they should have their own Order [Galbuliformes] has been
controversial. I follow Clements, HBW and SACC in considering them an Order and
placing them here before the Piciformes (barbets through woodpeckers).
Dickinson (2003) places them within the Picidae and at the end of that
Order.
24 The barbets and
relatives have been a problem ever since Prum (1988) showed that the
traditional classification of Barbets [Capitonidae] and Toucans
[Ramphastidae] as separate families was not supported by biochemical
evidence. The toucans were more closely related to other New World
barbets than the New World barbets were to any of the Old World
barbets. Sibley & Monroe (1990) proposed to lump toucans into New
World barbets and separate Old World barbets into two different
families: Megalaimidae [Asian Barbets] and Lybiidae [African Barbets].
HBW followed the old traditional approach but acknowledged the problem.
Dickinson (2003) and AOU (1998) just lumped them all within a single
family [Ramphastidae]. This would mean the loss of toucans as a
distinctive family, and disguise the significant biodiversity within
the group.
In my view, the SACC has
adopted a better approach. It divides these birds into five separate
families, explaining: "The families Capitonidae, Semnornithidae, and
Ramphastidae are each other's closest relatives
with respect to Old World barbets (Burton 1984, Prum 1988, Sibley and
Ahlquist 1990, Lanyon & Hall 1994, Barker & Lanyon 2000,
Johansson et al. 2001, Johansson & Ericson 2003, Moyle 2004). Old
Word barbets are here tangentially treated as separate families, Asian
Megalaimidae and African Lybiidae; recent genetic data (Moyle 2004)
support the monophyly of the barbet radiations within each region. To
emphasize the close relationships among New World taxa, these three
families were treated as subfamilies of a single family, Ramphastidae,
by AOU (1998). SACC proposal passed to treat these taxa at family rank. Semnornis [Toucan-Barbets] is treated as
separate family until affinities resolved. . . Genetic data indicate
that Semnornis may be basal to both families (Barker and Lanyon
2000); Moyle (2004) found weak support for that relationship, but also
weak support for a sister relationship to Ramphastidae."
25 The
most astonishing evidence presented in Hackett et al. (2008) was that
falcons [Falconidae] were not closely related to raptors [which now
becomes Accipitridae], and might be entitled to Order level. They
suggested that its closest relatives were parrots. This innovation
requires further confirmation; both IOC and Clements place Falconidae
here in sequence.
26 Sibley & Ahlquist
(1990) and Sibley & Monroe (1990) raised the Cockatoos to family
level distinct from the other Parrots. HBW took this approach, and I
follow them here. But Dickinson (2003) combined them again into a
single Psittacidae noting, in footnotes, that various other groups
(e.g., Kakapo Strigops habroptila, the hanging-parrots Loriculus et al.) could also qualify for family status. Christidis & Boles
(2008) reviewed the evidence and now split the psittaciformes into
three families: Cockatoos, Typical Parrots (Psittacidae), and New
Zealand Parrots (Strigopidae, which includes Kakapo). I now follow this
new arrangement.
27 Barker et al. (2004)
showed that the New Zealand Wrens were a very early offshoot, basal to
all other passerines.
28 Prum (1993) concluded,
on the basis of syringeal and osteological characters, that the Asities
were embedded within the Broadbill clade and merged them together, but
this was challenged on DNA sequence data by Irestedt et al. (2001).
That study lacked, however, some broadbill genera. HBW took the more
conservative and traditional approach in maintaining the Asities as a
family.
Moyle et al. (2006a)
provided the necessary new research to sort this all out. They showed
that there were two major clades within the Broadbills — (1) a grouping
of the Calyptomenna broadbills of Asia (these are the green
broadbills) and the Smithornis broadbills of Africa (these are
the lowland forest broadbills in Africa), and (2) a grouping of the
remaining Asian broadbills (5 genera) plus Grauer's Broadbill Pseudocalyptomena
graueri (a montane species which is an Albertine Rift endemic),
plus Asities in Madagascar and the Sapayoa of the New World (see note
29). The Broadbills as a traditional family are only monophyletic if
one considers Asities and Sapayoa to be broadbills. The situation
is comparable to the barbet/toucan conundrum in which the options are
either to lump all toucans/barbets together or separate them into
5 families, including elevating Toucan-Barbet to family status. The
SACC chose the batter option with the barbet/toucan assemblage.
The DNA evidence in the
broadbills best supports (in my view) creating two families of
broadbills — the Calyptomenid Broadbills [genera Calyptomena and Smithornis] and the Eurylaimid Broadbills [all other
genera, including Pseudocalyptomena]
— and retaining the Asities and the Sapayoa as separate families.
Finally, AOU, SACC, and Clements have seen the light, and adopted this
same common-sense and commendable approach. Clements coined better
names: the Calyptomenid Broadbills [genera Calyptomena and Smithornis] become the African & Green Broadbills, and the Eurylaimid Broadbills become the Asian & Grauer's Broadbills.
29
Moyle et al. (2009) showed that the Thamnophilidae are the sister of
all other closely related families, and that this sequence best
represents their relationships. SACC just adopted this new sequence
[antbirds through furnarids] in August 2001, and Clements in the 2012
update.
30 The crescentchests of central & southern South America are not
closely related to the tapaculos, where they have been traditionally
placed (Irestedt et al. 2002, Chesser 2004b). The South American
Checklist Committee has created a new family for this group, the
Melanopareiidae.
31
Genetic work (e.g., Irestedt et al. 2002, Chesser 2004b, and
others) showed that there were three distinct lineages in the
"Formicariidae." The South American and North American checklist
committees have handled this by restricting Formicariidae to just two
genera of antthrushes [Formicarius, Chamaeza]; created the family Grallariidae for all antpittas except the genus Pittasoma;
and assigned the two species of Pittasoma antpitta to the Gnateater
family [Rhinocryptidae]. This seems like only a temporary solution to
me — the two Pittasoma antpittas are huge compared to the tiny
gnateaters; they don't behave like gnateaters; and they may deserve
their own family.
32 Genetic data (Irestedt et al. 2002, 2006, Chesser 2004a) indicates that
the woodcreepers, traditionally considered a family [Dendrocolapidae]
are embedded within the Furnariidae, and within that large group, Geositta and Sclerurus are sister genera that are basal to all Furnariidae (including
dendrocolaptids). The SACC (2008) has lumped the woodcreepers with the
ovenbirds; I simply follow suit here.
33
The relationships of Sharpbill have been controversial and remain
unresolved. It has been included in the Cotingidae, Tyrannidae, or
Tityridae. Chesser (2004b) found no strong support for any of these
relationships, and Ohlson et al. (2007) found strong evidence against
inclusion of Oxyruncus in the Cotingidae. Thus the "traditional ranking of Oxyruncus
as a monotypic family was the best portrayal of our understanding of
its relationships at that time," said the SACC. Tello et al. (2009)
have confirmed the distinctiveness of Oxyruncus relative to the traditional family groupings but found that the tyrannid genera Onychorhynchus, Myiobius, and Terenotriccus grouped with Oxyruncus, and proposed that these genera be moved to Oxyruncidae.
No action has yet been taken by SACC on that idea; IOC places it among
the Tityridae, although with the three associated 'flycatcher' genera.
Given this continuing uncertainty, it seems best to elevate the
Oxyruncidae as a Family, so that birders continue to be aware of its
uniqueness, but perhaps with the understanding that the Family may, in
due course, be expanded to include Royal Flycatcher and various other
"flycatchers".
34 The problematic group that includes tityras, becards, mourners and
others has been handled many different ways in recent decades (e.g.,
Ridgely & Tudor 1989). Ericson et al. 2006 proposes the family name
Tityridae for the "Schiffornis assemblage," and they also
include Sharpbill Oxyruncus cristatus in this new family. Barber & Rice (2007) confirmed the monophyly of
the primary elements of this group and also proposed elevation to
family rank. The SACC (2008) has accepted this proposal, and so do I.
However, there is still uncertainty about Sharpbill and SACC (2008) has
provisionally retained it as a family. I merge it with the Tityridae,
following Ericson et al. (2006), as that evidence looks persuasive to
me at this point.
35 The sequence of the
Oscine Passerines (all the rest of the families) is perhaps the most
problematic of all issues. As an American, I am most comfortable with
the general arrangement of AOU (1998), which has also been generally
adopted by SACC, and Clements thus follows suit. These checklists deal only with the New World and do
not address the myriad of problems in arranging the Old World families.
The proposals of Sibley & Monroe (1990) — wrongly adopted by some
field guides — have proved to be partly right but quite wrong in
others. The idea of a monolithic Corvidae that arose solely in
Australasia is both partly right and partly wrong. Nuclear gene
sequencing (Barker et al. 2002) provides some potential directions but
is still preliminary. It is, however, now quite apparent that the
sequence adopted by HBW (and by me in the 5th edition of this web-based
list) was quite out-of-sync with reality.
In this 9th edition I adopt most of the Oscine Passerine
sequence of Gill et al. (2009) except for the final sequence (pipits to
Old World sparrows) where I use a sequence similar to AOU/SACC. It
seems to me that the IOC sequence is better supported by current
literature than Dickinson (2003), which I had used as my primary list
in the 8th edition.
Both the IOC list (Gill et al. 2009) and the
Cracraft/Dickinson (2003) list has multiple genera listed as incertae
sedis; in other words, a cop-out for now. Alas, I want a complete
list even if we have to make our best guesses at this point in time. I
have provisionally elevated a few of those genera to family status.
Others may warrant similar treatment although, for the most part, it
seems likely that most of the 'difficult' genera will eventually go
into established families.
36 Sibley
& Monroe (1990, Christidis & Boles (1994, 2008), and Dickinson
(2003) all lump the Australian Chats with the honeyeaters; so do I. HBW
may maintain the Australian Chats as a separate family but the DNA
evidence is that that they deeply embedded within the Honeyeaters.
37 Many lists (e.g.,
Sibley & Monroe 1990, Christidis & Boles 1994) placed the 3
bristlebirds within a broad Pardalotidae that also includes\d the
Australasian warblers [Acanthizinae]. Schodde & Mason (1999)
explained why the Pardalotidae should be a family, separate from the
Acanthizidae (contra Sibley & Monroe 1990); Dickinson (2003)
agreed with this separation and further elevated the Bristlebirds
[Dasyornithidae] to family status. Christidis & Boles (2008) also adopt this approach.
Pilotbird Pycnoptilus
floccosus, Rockwarbler Origma solitaria, and Fernwren Oreoscopus
guttaralis are all now placed within the Acanthizidae [Australasian
Warblers]. Dickinson (2003) takes the same approach to the three
whitefaces Aphelocephala, as well as the New Zealand endemics
Yellowhead Mohoua ochrocephala and Pipipi Finschia
novaeseelandiae that are sometimes placed with whistlers.
38 Cracraft &
Feinstein (2000) published biochemical and morphological evidence that
the three cnemophiline birds-of-paradise (genera Cnemophilus and Lobparadisea) are not closely related to other
birds-of-paradise at all, but are quite removed and somewhere near the
base of the corvoid phylogenetic tree. This persuaded me to elevate
them as a family in my 5th edition on-line family list. Dickinson
(2003) now does this in print and places them here, very far removed
from the birds-of-paradise. Gill et al. (2009) quite properly now call them all Satinbirds.
39 Elevating
the berrypeckers to family status, and then making them into two
separate families [Melanocharitidae and Paramythiidae], is a Sibley
& Ahlquist (1990), Sibley & Monroe (1990) innovation based on
DNA-DNA hybridization studies. The first Passerine volume of HBW states
that they plan to follow this approach — so I have the two separate
families here. Dickinson (2003) merges all the berrypeckers into one
family [Melanocharitidae] but there is no explanation. Data published
in Barker et al. (2004) suggests that the two berrypecker groups may
not be closely related. Gill et al. (2009) split them into two
families, but placed the families next to each other in their sequence.
40 Stitchbird Notiomystis cincta, a New Zealand endemic and an
endangered species, has long been considered a Honeyeater. New
molecular evidence shows that it is not related to Honeyeaters; the
closest relatives are the New Zealand Wattlebirds (the Callaeidae). It
has been proposed as a distinct family (Driskell et al. 2007) and I
find the evidence compelling. Gill et al. (2009) agreed.
41 Norman et al. (2009) also found that the New Zealand Mohoua
[Whitehead, Yellowhead] have no close affinities to any current family.
Given what has occurred with Stitchbird (i.e., evidence showed it was
an endemic family of New Zealand) and similarly to New Zealand parrot
[Strigopidae], it seems that the handwriting is on the wall that the
Mohouidae will become a new family in due course.
42 Sibley & Ahlquist
(1990) and Sibley & Monroe (1990) had the whipbirds, wedgebills,
jewel-babblers, rail-babbler, quail-thrushes, and Blue-capped Ifrit Ifrita
kowaldi all within the subfamily Cinclosomatinae in their broad
Corvidae assemblage. Dickinson (2003), presumably on unpublished
DNA sequencing, split most of these into two families: the five
species of quail-thrush Cinclosoma within one family
[Cinclosomatidae] with the whipbirds, wedgebills, jewel-babbler and
rail-babbler in the other family [Eupetidae]. Jønsson et al. (2007) showed that the Rail-Babbler Eupetes macrocerus
was not closely related at all, but was an ancient lineage closer to
Rockfowl and Rockjumpers, and it is given family status here.
Norman et
al. (2009) used nuclear DNA to determine the relationships in those
groups. They found that Psophodidae should be reserved for just the
whipbirds & wedgebills, leaving the jewel-babblers of New Guinea to be
placed with quail-thrushes in the Cinclosomatidae. I follow their
recommendations. The Ifrit
from New Guinea is considered by some authors as incertae sedis and
placed (with the two melampittas Melampitta)
next to the Birds of Paradise. Norman et al. (2009) showed that Ifrit
had no relationship to the Psophodidae, and seems (like the two
melampittas) be be most closely related to Monarchidae.
43
Norman et al. (2009), in reviewing the nuclear DNA of many
Australo-Papuan aberrant genera, found that three genera, previously
considered to be in three different families, showed close
relationships with each other and no other groups. These were Crested
Bellbird Oreoica gutturalis of arid Australian scrublands, Rufous-naped "Whistler" Aleadryas rufinucha of New Guinea mountains, and Crested "Pitohui" "Pitohui" cristatus
of New Guinea hill country. Norman et al. (200) suggested that the
relationships of these three were close enough to be united into a
single genus (Oreoica) but preferred instead to resurrect Ornorectes
for the "Pitohui." While they did not formally designate family–level status for
this group, the birds showed no relationship to other families, so I
tentatively erect a new family–level taxon here.
This work, and others, now split the
paraphyletic Pitohuis into four genera — and then place them in four
families! The "true" Pitohuis (all that is left of genus Pitohui), are closely related to Old World orioles, and I tentatively place them there.
Norman et al. (2009) also found that the Daphoenositta
[Pink-faced "Nuthatch", sometimes placed in Sitellas] of New Guinea, was unrelated to current families.
Mottled "Whistler" Rhagologus leucostigma is related to
either woodswallows and allies [Artamidae] or African bush-shrikes.
These is not yet any good place to put these enigmatic birds.
44
The 'core' lineages appear to be: (a) the core bush-shrikes, (b) the
batises and wattle-eyes, and (c) the rest of the malaconotoids; e.g.
Fuchs et al. (2004). The helmet-shrikes,
vangas, and shrike-flycatchers are all on the same evolutionary branch;
Reddy et al. (2012) and proposed that this lineage be designated the
Vangidae. In doing so, helmetshrikes become a subfamily [Prionopinae]
as to a set comprised of shrike-flycatchers Megabyas & Bias, flycatcher-shrikes Hemipus, wood-shrikes Tephrodornis [Tephrodornithinae]. The two Asian Philentoma are now placed in this expanded Vangidae family.
45
Dickinson (2003), presumably on unpublished DNA sequencing, created
this new family, and Christidis & Boles (2008) and Gill et al.
(2009) followed. Norman et al. (2009) found that boatbills were a
unique lineage, but waffled on where it belonged. It could conceivably
belong with an expanded Artamidae.
46
Although Dickinson (2003) separated the woodswallows Artamidae from the
butcherbirds & bell-magpies Cracticidae, and implied that Peltops
was among the latter, Norman et al. (2009) found that these three
lineages formed a single clade; they recommend that Artamidae include
all these groups: woodswallows, Peltops,
and the butcherbirds
& allies. Christidis & Boles (2088) lumped them, but Gill et
al. (2009) continues
to split them, as does HBW. For the moment I continue to split them
into two families, consistent with most world lists. They are quite
different types of birds. Mottled "Whistler" Rhagologus leucostigma may belong with the Cracticidae.
47 Moyle et al. (2006b) published genetic evidence that Bornean
Bristlehead is an isolated relict from the diversification of
shrike-like birds across the Old World tropics. It is in the radiation
that includes vangas, bush-shrikes, helmet-shrikes and allies. I follow the placement of Gill et al. (2009).
48
The pachycephaline assemblage of Whistlers, Pitohuis, and allies has
been all messed up in prior taxonomies. Jønsson et al. (2008)
and Dumbacher et al. (2008) showed that the genus Pitohui was
polyphyletic; by the time it was sorted out only half of the Pitohuis
remained as even related to pachycephalids, and Norman et al. (2009)
suggest that two of these (P. ferrugineus & P. incertus) be assigned to genus Colluricincla; in other words, they are shrike-thrushes. Further, Mottled "Whistler" Rhagologus leucostigma is not a whistler, but rather it is a malaconotoids, while Olive-flanked "Whistler" Hylocitrea bonensis of Sulawesi is related to waxwings! (Spellman et al. 2008).
The Cracraft/Dickinson
(2003) list had its own innovations, elevating the Shrike-Tits
[Falcunculidae]
and Shrike-Thrushes & Allies [Colluricinclidae] to family level without discussion.
I had followed those decisions, tentatively, in the 8th edition list
but Norman et al. (2009) appear to suggest that family Pachycephalidae
should include all the pachycephalid whistlers & pitohuis (after
the non-related species are removed), plus the shrike-tits and the
shirke-thrushes & allies. I do so here, although again this is
tentative, awaiting further confirmation and consensus.
49 Reddy &
Cracraft (2007) found that the Pteruthius shrike-babblers were related to vireo and Erpornis, and unequivocally placed them among the Vireonidae. The evidence suggests that Pteruthius diverged ~40 million years ago, more similar to Donacobius and Olive Warbler, considered by most to be Family-level taxa isolated in
the New World, and so I tentatively treat shrike-babblers similarly.
50 The Vireonidae was formerly placed in or next to the nine-primaried
oscines in linear sequences (e.g., Ridgely & Tudor 1989). Genetic
data (e.g., Barker et al. 2002, 2004) have confirmed Sibley &
Ahlquist's (1990) once-controversial finding that the Vireonidae is
part of the Corvida lineage.
On a level equivalent to the finding that Donacobius was an Old World megalurid isolated in the Amazon was the finding that Erpornis zantholeuca
(White-bellied 'Yuhina') of Asia is an Old World relict in a clade with
New World vireos (Cibois 2003, Alström et al. 2006). Reddy &
Cracraft (2007) placed
shrike-babblers in Vireonidae. But shrike-babblers diverged ~30 mya
while Erpornis diverged ~24 mya, and now include these within their own
family as older taxa should be ranked at Family level.
51 The Magpie-lark and Torrent-lark, formerly considered a separate family
Grallinidae [Mudnest-Builders] are embedded within the Monarchs
(Baverstock et al. 1992, Christidis & Boles 2008). They no longer
warrant even subfamily rank (Dickinson 2003). Other birds thought to be
Monarchs, including the Elminia crested-flycatchers of Africa, the African Erythrocercus flycatchers, the Asian genus Philentoma, the Australasian boatbills in genus Machaerirhynchus and others are not. These now appear in other families [e.g.,
Machaerirhynchidae, Stenostiridae]; Barker et al. (2004), Beresford et
al. (2005), Filardi & Moyle (2005). Blue-capped Ifrit Ifrita
kowaldi may also be a monarch.
52
Rockfowl and Rockjumpers are early relict offshoots in the passerine
assemblage; Cracraft et al. (2004), Jønsson et al. (2007). Each
group is exceptional and unique. HBW has given Rockfowl family status.
I believe the evidence of early divergence and a long history of
isolation and evolution into unique groups, warrants family status for
each. The enigmatic Rail-Babbler is most closely related to the Rockfowl and
Rockjumpers; Jønsson et al. (2007). Its divergence from them was
so long ago that I believe it warrants family status. It is a unique
taxon. [Clements (2012 update) finally moved Blue-capped Ifrit Ifrita
kowaldi out of the Eupetidae, and to the base of the Pachycephalidae].
53 When HBW began production in the 1990s, there was no intent to list the
Kinglets as a family. The evidence that they are a distinct lineage
developed, though, and by Vol. 11 the HBW series had a family chapter
for them. This location is nearer the base of the
passerine tree than traditionally thought; Alström et al. (2006), Jønsson &
Fjeldså (2006), Barker et al. (2004), Fregin et al. (2012).
54 The Elminia crested-flycatchers, two Asian canary-flycatchers in the genus Culicicapa,
and "fantail in Asia are now formally proposed as family
Stenostiridae [Fairy Flycatchers]; Fuchs et al. (2009), see also
Beresford et al. (2005). The new family may include other species that
have not yet been tested.
55 The enigmatic Hume's Groundpecker Pseudopodoces humilis, traditionally considered a jay, is a terrestrial tit; James et al. (2003), Gill et al. (2005). Many now call it Ground-Tit.
56 Wallcreeper is allied with Nuthatches; e.g., Jønsson &
Fjeldså (2006). Whether to lump them with Nuthatches or maintain
their traditional family status is a matter of opinion, not science. I
prefer the traditional family rank; HBW and Gill et al. (2009) maintained it as well.
57 Beresford et al. (2005) showed that the Nictators were a separate
lineage that diverged long ago. This enigmatic group has been variously
placed in bulbuls or babblers. Fregin et al. (2012) placed it here in the sequence.
58 Initial genetic evidence suggests that Bearded Reedling Panurus biarmicus was not closely related to the parrotbills with which it has been
traditionally placed; Alström et al. (2006), Jønsson &
Fjeldså (2006), Barker et al. (2004), Cibois (2003). Fregin et al. (2012) place it here in sequence.
59 The Macrosphenidae is a lineage that includes crombecs and
certain African warblers, a group described by Beresford et
al. (2005), and only recently (2011) acknowledged by Clements and others.
60 The break-up of the Old World Warblers is discussed in a separate three-page web set; Alström
et al. (2006) formally proposed a number of the new family names used
here. "Megaluridae" was initially proposed for the Grassbirds, but Locustellidae has priority.
61 The genus Donacobius ("Black-capped
Mockingthrush") of South America is an ancient offshoot of the locustellid warbler group
(Barker 2004, Alström et al. 2006). Some prefer to include Donacobius within the Grassbirds to emphasize its closest relatives, but it has
evolved in isolation for so long that I think it should be considered
it own family [Donacobidae], consistent with the treatment of
other similar situations.
62 Cibois
et al. (1999, 2001) showed that there was a distinct radiation of
warbler-like birds in Madagascar eons ago. For the moment, I call them
the Bernieridae [Malagasy Warblers], and this has since been adopted by Clements and IOC.
63 A surprise in the DNA analysis of babblers was that genus Pnoepyga,
which includes 4 species of tiny, short-tailed, terrestrial
"wren-babblers," were not within the babbler evolutionary radiation;
Gelang et al (2009). They did not know exactly where to place this
"long-branch" lineage, but it is clearly not within the other babbler
families. Gelang et al. (2009) proposed the family name Pnoepygidae.
They did not propose an English name of the birds within this new
family. Pnoepyga is just one of a half-dozen genera that have been called Wren-Babblers (e.g., Rimator, Ptiolcichla, Kenopia, Napothera, Spelaeornis),
so the new family must be called something other than just
"wren-babblers." The 2011 update of Clements checklist calls them "cupwings," and I follow.
64 This surprising location for the swallows was revealed using 7 nuclear markers in Reddy et al. (2012).
65 Some of the "Old World Warblers" [the previous Sylviidae] are actually babblers, including the Sylvia
'warblers'. This had implication for the proper use of the "Sylviidae"
name, but that was sorted out satisfactorily. The babblers themselves
are
an eclectic group of birds that can be handled taxonomically in various
ways. Gelang et al. (2009) proposed setting up five babbler
subfamilies, but various world checklists (e.g., Clements, IOC) and I
initially chose to raise them to Family level. More recently, a better
reasoned and more nuanced position was proposed by Moyle et al. (2012):
the three core babbler clades are best considered subfamilies, but
White-eyes & allies are better considered a family, as are Sylvids.
I now follow that proposal with one addition. I split the main two
sylvid clades into two Families, re-erecting the Paradoxornithidae for
parrotbills & allies.
66 Fregin et al. (2012) found molecular evidence that the enigmatic African species Green Hylia Hylia prasina
was near the long-tailed tits, just had been suggested by Beresford et
al. (2005). Sefc et al. (2003) had found a sister relationship between Hylia and Tit-hylia Pholidornis rushiae,
based on mt DNA. Fregin et al. (2012) considered the elevation of these
two species in family Hyliidae to be "reasonable," but awaited nuclear
DNA evidence on Pholidornis before making that proposal. As
it does seem likely the Hyliidae will be proposed in the future, I
elevate that Family provisionally now.
67
Fregin et al. (2012) used nuclear DNA evidence to better locate the
taxonomic position of the Cettiidae here, but they also proposed two
offshoot Families: the Scotocercidae for Scrub Warbler Scotocerca inquieta
of north Africa and the Middle East, and the Erythrocercidae for the
three species of "warbler-like flycatchers" in the African genus Erythrocercus.
Scrub Warbler fits well within the morphologically diverse Cettiidae
and has not previously been proposed as anything like a Family-level
taxon. Fregin et al. (2012) propose family status primarily because "it
is separated from [the core] Cettiidae . . . by a long internode." If
the evidence of a "long internode" were to be adopted as a marker for
Family level status, there are a host of similar examples in the
Passerines, including within the families Macrosphenidae and Sylviidae
in their own study, to which they do not apply the same standard. My
feeling is that the "Scotocercidae" is overreaching and not consistent
with modern views of Family level status. However, the three species of
Erythrocercus "flycatchers" are morphologically and ecologically distinctive, and separated more distantly separated from the Cettiidae plus Scotocerca.
The Erythrocercidae proposed by Fregin et al. (2012) might marginally
be on the cusp of Family status (evidence about the age of the lineage
would be useful; the vast majority of passerine families are 20 mya
plus in age of divergence), and so I very tentatively accept it for the
moment.
68
Gill et al. (2009) and Clements (2011) include
Spot-throat Modulatrix stictigula, Dapplethroat Arcanator orostruthus, and Gray-chested Babbler Kakamega poliothorax in this family, as well as the two Promerops sugarbirds. Whether that holds is something to watch in the future.
69
Fuchs et al. (2006a) showed that the Hyliotas were an early radiation
at the base of the passerine tree. I give family rank to each of these
early lineages, pending more thorough analysis. Whether this status
will survive will depend upon future studies. Gill et al. (2009) gave
it family status and placed it here.
70
The Muscicapidae includes not only the traditional Old World
Flycatchers, but numerous Old World chats and redstarts that used to be
placed with Thrushes. It is now a huge assemblages containing all
these birds; Sibley & Ahlquist (1990), Dickinson (2003),
Jønsson & Fjeldså (2006). It does not, however,
include the canary-flycatchers in the genus Culicicapa, and a few other genera, that belong to the family Stenostiridae or other families; e.g., Barker et al. (2004).
71 The exact relationships of the Philippine endemic genus Rhabdornis
was not known until Lovette & Rubenstein (2007). They found them to
be the earliest offshoot of the Asian-Pacific clade of starlings, but
after the split of African starlings, thus making Rhabdornises embedded
within the Sturnidae. Zuccon et al.
(2006) had foreshadowed this possibility, which has since been followed
by the IOC list (Gill & Donsker 2010) and Clements.
72 The Oxpeckers have long been considered aberrant Starlings, but they
diverged quite some time ago and are only rather distantly related;
Cibois & Cracraft (2004). Fry & Keith (2000) gave them family
rank, and I followed them several editions ago in this on-line list.
This still seems to be the preferred treatment; e.g., Zuccon et al.
(2006), Lovette & Rubenstein (2007).
73 The Chinese endemic Przevalski's 'Finch'/Pink-tailed 'Bunting' Urocynchramus pylzowi is not closely related to buntings or finches; Groth (2001). It is
placed in a separate clade by Jønsson & Fjeldså
(2006). I gave it preliminary
family status, and so did both Clements and Gill et al. (2009).
74 A big surprise was the finding that Olive-flanked "Whistler" Hylocitrea bonensis of montane Sulawesi was not a pachycephalid but rather most closely
related to the bombycillids (e.g., Spellman et al. 2008). As stated
above, I prefer to give family rank to each of the bombycillid clades
(waxwings, silky-flycatchers, Palmchat, Hypocolius, and now this one).
Thankfully, so does Gill et al. (2009) and Clements.
75
Hypocolius is traditionally given family rank. Genetic evidence
confirms that its closest affinities are with waxwings and relatives
(e.g., Spellman et al. 2008). It is equally appropriate to
put all these groups into one family, with multiple subfamilies, or to
maintain separate family rank for each group. I prefer the latter
course, and HBW does as well. Gill et al. (2009) and Clements (2011)
retain all the bombycillid families also. I think that is a much better
choice.
76
The A.O.U. (1998) considers Olive Warbler a family. It is an Old World
relict, most closely allied to Accentors, that is isolated in the New
World; Jønsson & Fjeldså (2006).
77 The A.O.U. (2010) now accepts the Calcariidae as a family, following Jønsson & Fjeldså
(2006).
78 The exact parameters of the Thraupidae [Tanagers] are not yet known, but it no longer includes the genera Euphonia and Chlorophonia, which have been transferred to the Fringillidae, nor Piranga, Habia, and Chlorothraupis, which belong in the Cardinalidae; e.g., Klicka et al. 2007. The Conirostrum conebills and Diglossa flower-piercers do belong this family. It also appears that Galapagos finches and Bananaquit belong in this assemblage.
79
The exact parameters of the Cardinalidae [Cardinals, Grosbeaks &
allies] are not yet known, but it seems that the 'traditional' set of
species assigned to this family is non-monophyletic. Genetic data
published by Klicka et al. (2007) showed that a monophyletic
Cardinalidae would require removal of Saltator and Parkerthraustes and inclusion of Amaurospiza, Granatellus, Piranga, Habia, and Chlorothraupis. This means moving various 'warblers' and 'tanagers' to this group, including the North American 'tanagers' in Piranga [e.g., Summer, Hepatic, Scarlet & Western Tanagers] and moving the
Saltators and others elsewhere (but where?). Much is left unsettled at
the present time (2008). It is even possible that another family will
need to be erected for some of these odds and ends.
80 The traditional Tanager genera Euphonia and Chlorophonia have been moved from the Thraupidae to the Fringillidae and the SACC
and AOU now list them as a subfamily of Finches. This was based on the
genetic data work of Klicka et al. (2000, 2005), Yuri & Mindell
(2002), and others. It is consistent with aspects of the biology of the
euphonias and chlorophonias with respect to voice, diet, and nesting
biology.
81 Fjeldså et al.
(2010) showed that this Mindanao, Philippines, endemic Hypocryptadius cinnamomeus
[Cinnamon Ibon], formerly considered a "white-eye," was actually a
relict forest canopy sparrow that diverged from the rest of the
Passeridae ~31 mya. Fjeldså et al. (2010) suggested only
subfamily status. Consistent with the way other similar taxa are
treated, I tentatively place it at Family level. |
Literature Cited:
- Alström, P., P.G.P. Ericson, U. Olsson,
and P. Sundberg. 2006. Phylogeny and classification of the avian
superfamily Sylvioidea. Molec. Phylog. Evol. 38:
381-397.
- American Ornithologists' Union. 1998.
Check-list of North American Birds. 7th ed. A.O.U., Washington,
D. C.
- Baker,
A.J., S.L. Pereira, and T.A. Paton. 2007. Phylogenetic relationships
and divergence times of Charadriiformes genera: Multigene evidence for
he Cretaceous origin of at least 14 clades of shorebirds. Biology
Letters 3: 205-209.
- Barber, B.R., and N.H. Rice. 2007. Systematics and evolution in the Tityrinae. Auk 124: 1317-1329.
- Barker, F.K. 2004. Monophyly and relationships
of wrens (Aves:Troglodytidae): a congruence analysis of heterogeneous
mitochondrial and nuclear DNA sequence data. Molec. Phylog. Evol. 32: 486-504.
- Barker, F.K., G.F. Barrowclough, and J.G.
Groth. 2002. A phylogenetic hypothesis for passerine birds: taxonomic
and biogeographic implications of an analysis of nuclear DNA sequence
data. Proc. Roy. Soc. Lond. B. 269: 295-305
- Barker, F.K., A. Cibois, P. Schikler, J.
Feinstein, and J. Cracraft. 2004. Phylogeny and diversification of the
largest avian radiation. Proc. Nat. Acad. Sci. 101: 11040-11045.
- Barker, F.K., and S.M. Lanyon. 2000. The
impact of parsimony weighting schemes on inferred relationships among
toucans and Neotropical barbets (Aves: Piciformes). Molecular
Phylogenetics and Evolution 15: 215-234.
- Baverstock,
P.R., R. Schodde, L. Christidis, M. Krieg, and J. Birrell. 1992.
Evolutionary relationships of the Australasian mud-nesters
(Grallinidae, Corcoracidae): immunological evidence. Australian J.
Zool. 40: 173-179.
- Beresford, P., F.K. Barker, P.G. Ryan, and
T.M. Crowe. 2005. African endemics span the tree of songbirds
(Passeri): molecular systematics of several evolutionary 'enigmas'.
Proc. R. Soc. B 272: 849-858.
- Brown, L.H., E.K. Urban, and K. Newman, eds.
1982. The Birds of Africa. Vol. 1. Academic Press, London, and
following volumes.
- Burton, P.J.K. 1984. Anatomy and evolution of
the feeding apparatus in the avian orders Coraciiformes and Piciformes.
Bull. Brit. Mus. (Natural History) 47: 331-441.
- Chesser, R.T. 2004a. Systematics, evolution, and biogeography of the South American ovenbird genus Cinclodes. Auk 121: 752-766.
- Chesser, R.T. 2004b. Molecular systematics of New World suboscine birds. Molec. Phylog. Evol. 32: 11-24.
- Christidis, L, and W.E. Boles. 2008. Systematics and taxonomy of Australian Birds. CSIRO Publ, Sydney.
- Cibois, A. 2003. Mitochondrial DNA phylogeny
of babblers (Timaliidae). Auk 120: 35-54.
- Cibois, A., and J. Cracraft. 2004. Assessing
the passerine "Tapestry": phylogenetic relationships of the
Muscicapoidea inferred from nuclear DNA sequences. Molec.
Phylog. Evol. 32: 264-273.
- Cibois, A., E. Pasquet, and T.S. Schulenberg.
1999. Molecular systematics of the Malagasy babblers (Timaliidae) and
Warblers (Sylviidae), based on cytochrome b and 16S rRNA sequences.
Molec. Phylog. Evol. 3: 581-595.
- Cibois, A., B. Slikas, T.S. Schulenberg, and
E. Pasquet. 2001. An endemic radiation of Malagasy songbirds is
revealed by mitochondrial DNA sequence data. Evolution 55: 1198-1206.
- Cibois,
A., M. Gelang, and E. Pasquet. 2010. An overview of the babblers and
associated groups. Systematic Notes on Asian Birds 68: 1-5.
- Cracraft, J., and J. Feinstein. 2000. What is
not a bird of paradise? Molecular and morphological evidence places Macgregoria in the Meliphagidae and the Cnemophilina near the base of the corvoid
tree. Proc. Royal Soc. London B. 267:233-241.
- Cracraft, J., F.K. Barker, M. Braun, J.
Harshman, G.J. Dyke, J. Feinstein, S. Stanley, A. Cibois, P. Schikler,
P. Beresford, J. García-Moreno, M.D. Sorenson, T. Yuri and D.P.
Mindell. 2004. Phylogenetic relationships among modern birds
(Neornithes): toward an avian tree of life. Pp. 468-489 in J.
Cracraft & M. J. Donoghue, eds. Assembling the Tree of Life. Oxford
University Press, New York.
- del Hoyo, J., A. Elliott, and J. Sargatal,
eds. 1992. Handbook of the Birds of the World. Vol. 1. Lynx Edicions,
Barcelona, and following volumes.
- Dickinson, E., ed. 2003. The Howard &
Moore Complete Checklist of the Birds of the World. 3d ed. Princeton
Univ. Press, Princeton, N.J.
- Dimcheff, D.E., S.V. Drovetski, and D.P.
Mindell. 2002. Phylogeny of Tetraoninae and other galliform birds using
mitochondrial 12s and ND2 genes. Molec. Phylog.
Evol. 24: 203-215.
- Driskell, A., L. Christidis, B.J. Gill, W.E.
Boles, F.K. Barker, and N.W. Longmore. 2007. A new endemic family of
New Zealand passerine birds: adding heat to a biodiversity hotspot.
Australian J. Zool. 55: 73-78.
- Dumbacher,
J. P., K. Deiner, L. Thompson, and R. C. Fleischer. 2008. Phylogeny of
the avian genus Pitohui and the evolution of toxicity in birds. Molec.
Phylog. Evol. 49: 774-81.
- Ericson, P.G.P., M. Irestedt, and J.S.
Johansson. 2003. Evolution, biogeography, and patterns of
diversification in passerine birds. Jour. Avian Biol. 34: 3-15.
- Ericson, P.G.P., D. Zuccon, J.I. Ohlson, U.S.
Johansson, H. Alvarenga, and R.O. Prum. 2007. Higher level phylogeny
and morphological evolution of tyrant flycatchers, cotingas, manakins
and their allies (Aves: Tyrannida). Molec. Phylog.
Evol. 40: 471-483.
- Fain, M.G., and P. Houde. 2004. Parallel
radiations in the primary clades of birds. Evolution 58: 2558-2573.
- Filardi,
C.E., and R.G. Moyle. 2005. Single origin of a pan-Pacific bird group
and upstream colonization of Australasia. Nature 438: 216-219.
- Fjeldså, J., M. Irestedt, P.G.P. Ericson, and D. Zuccon. 2010. The Cinnamon Ibon Hypocryptadius cinnamomeus is a forest canopy sparrow. Ibis doi: 1111/j.1474-919X.2010.01053.x
- Fregin,
S., M. Haase, P. Alström, and U. Olsson. 2012. New insights into
family relationships within the avian superfamily Sylvioidea
(Passeriformes) based on seven molecular markers, BMC Evol. Biol. 12:
157
- Fuchs,
J., R.C.K. Bowie, J. Fjeldså, and E. Pasquet. 2004. Phylogenetic
relationships of the African bush-shrikes and helmet-shrikes
(Passeriformes: Malaconotidae). Molec. Phylog. Evol. 33: 428-439.
- Fuchs, J., J. Fjeldså, R.C.K. Bowie, G.
Voelker, and E. Pasquet. 2006a. The African warbler genus Hyliota as a lost lineage in the Oscine songbird tree: molecular support for an
African origin of the Passerida. Molec. Phylog.
Evol. 39: 39: 186-197.
- Fuchs,
J., J. Fjeldså, and E. Pasquet. 2006b. An ancient African
radiation of corvoid birds (Aves: Passeriformes) detected by
mitochondrial and nuclear sequence data. Zoologica Scripta 35: 375-385.
- Fuchs,
J., E. Pasquet, A. Couloux, J. Fjeldså, and R.C.K. Bowie. 2009. A
new Indo-Malayan member of the Stenostiridae (Aves: Passeriformes)
revealed by multilocus sequence data: biogeographical implications for
a morphologically diverse clade of flycatchers. Molec. Phylog. Evol.
53: 384-393.
- Fregin S, M Haase, U
Olsson & P Alström. 2012. New insights into family
relationships within the avian superfamily Sylvioidea (Passeriformes)
based on seven molecular markers. BMC Evol. Biol. 12:157.
- Fry, C. H., and S. Keith, eds. 2000. The Birds of Africa. Vol. 6. Academic Press, London.
- Gelang,
M., A. Cibois, E. Pasquet, U. Olsson, P. Alström, and P.G.P.
Ericson. 2009. Phylogeny of babblers (Aves, Passeriformes): major
lineages, family limits and classification. Zoologica Scripta 38:
225-236.
- Gill,
F.B., B. Slikas, and F.H. Sheldon. 2005. Phylogeny of titmice
(Paridae): II. Species relationships based on sequences of the
mitochondrial cytochrome-b gene. Auk 122: 121-143.
- Graur,
D., and W. Martin. 2004. Reading the entrails of chickens: molecular
timescales of evolution and the illusion of precision. Trends in
Genetics 20: 80-86.
- Groth, J.G. 2001. Molecular evidence of the
systematic position of Urocynchramus pylzowi. Auk 117: 787-791.
- Hackett,
S.J., R.T. Kimball, S. Reddy, R.C.K. Bowie, E. L. Braun, M. J. Braun,
J.L. Chojnowski, W. A. Cox, K.-L. Han, J. Harshman, C.J. Huddleston,
B.D. Marks, K.J. Miglia, W.S. Moore, F.H. Sheldon, D.W. Steadman, C. C.
Witt, and T. Yuri. 2008. A phylogenomic study of birds reveals their
evolutionary history. Science 320: 1763-1768
- Holyoak, D.T. 2001. Nightjars and their
Allies. Oxford Univ. Press, Oxford.
- Hughes, J.M., and A.J. Baker. 1999.
Phylogenetic relationships of the enigmatic Hoatzin (Opisthocomus
hoazin) resolved used mitochondrial and nuclear gene sequences.
Molec. Biol. Evol. 16: 1300-1307.
- Irestedt, M., J. Fjeldså, U.S.
Johansson, and P.G.P. Ericson. 2001. Phylogeny of major lineages of
suboscines (Passeriformes) analyses by nuclear DNA sequence data. J.
Avian Biol. 32: 15-25.
- Irestedt,
M., J. Fjeldså, U.S. Johansson, and P.G.P. Ericson. 2002.
Systematic relationships and biogeography of the tracheophone
suboscines (Aves: Passeriformes). Molec. Phylog. Evol. 23: 499-512.
- Irestedt,
M., J. Fjeldså, and P.G.P. Ericson. 2006. Evolution of the
ovenbird-woodcreeper assemblage (Aves: Furnariidae) - major shifts in
nest architecture and adaptive radiation. J. Avian Biol. 37: 260-272.
- James, H.F., P.G.P. Ericson, B. Slikas, F-M. Lei, F.B. Gill, and S.L. Olson. 2003. Pseudopodoces humilis,
a misclassified terrestrial tit (Paridae) of the Tibetan Plateau:
evolutionary consequences of shifting adaptive zones. Ibis 145: 185-202.
- Jetz,
W., Thomas, G.H., Joy, J.B., Hartmann, K., and Mooers, A.O. 2012. The
global diversity of birds in space and time. Nature 491: 444-448.
- Jønsson, K.A., and J. Fjeldså. 2006. A
phylogenetic supertree of oscine passerine birds (Aves:Passeri).
Zoologica Scripta 35: 149-186.
- Jønsson, K.A., J. Fjeldså., P.G.P.
Ericson, and M. Irestedt. 2007. Systematic placement of an enigmatic
Southeast Asian taxon Eupetes macrocerus and implications for
the biogeography of a main songbird radiation, the Passerida. Roy. Soc.
Lond. B. doi:10.1098/rsbl.2007.0054
- Jønsson,
K.A., R.C.K. Bowie, J.A. Norman, L. Christidis, and J. Fjeldså.
2008. Polyphyletic origin of toxic Pitohui birds suggests widespread
occurrence of toxicity in corvoid birds. Royal Soc. Biol. Lett.
February 23, 2008 4:71-74; doi:10.1098/rsbl.2007.0464
- Kemp, A. 1995. Bird Families of the World: The
Hornbills. Oxford Univ. Press, Oxford.
- Klicka,
J., K. Burns, and G.M. Spellman. 2007. Defining a monophyletic
Cardinalini: A molecular perspective. Molec. Phylog. Evol. 45: 1014
1032.
- Klicka, J., K.P. Johnson, and
S.M. Lanyon. 2000. New World nine-primaried oscine relationships:
constructing a mitochondrial DNA framework. Auk 117: 321-326.
- Klicka,
J., G. Voelker, and G.M. Spellman. 2005. A molecular phylogenetic
analysis of the "true thrushes" (Aves: Turdinae). Molec. Phylog. Evol.
34: 486-500.
- Lanyon, S.M., and J.G. Hall. 1994.
Re-examination of barbet monophyly using mitochondrial-DNA sequence
data. Auk 111: 389-397.
- Livezey, B.C. 1997. A phylogenetic analysis of
basal Anseriforms, the fossil Presbyornis, and the interordinal
relationships of waterfowl. Zool. J. Linn. Soc. Lond. 121: 361-428.
- Lovette,
I.J., and D.R. Rubenstein. 2007. A comprehensive molecular phylogeny of
the starlings (Aves: Sturnidae) and mockingbirds (Aves: Mimidae):
Congruent mtDNA and nuclear trees for a cosmopolitan avian radiation.
Molec. Phylog. Evol. 44: 1031–1056.
- Moyle, R.G. 2004. Phylogenetics of barbets
(Aves : Piciformes) based on nuclear and mitochondrial DNA sequence
data. Molec. Phylog. Evol. 30: 187-200.
- Moyle,
R.G. 2006. A molecular phylogeny of kingfishers (Aves: Alcedinidae)
with insights into early biogeographic history. Auk 123: 487-499.
- Moyle, R.G., R.T. Chesser, R.O. Prum, P.
Schikletr and J. Cracraft. 2006a. Phylogeny and evolutionary history of
Old World suboscine birds (Aves: Eurylaimides). Amer. Mus. Novitates
3544: 1-22.
- Moyle, R.G., J. Cracraft, M. Lakim, J. Nais,
and F.H. Sheldon. 2006b. Reconsideration of the phylogenetic
relationships of the enigmatic Bornean Bristlehead (Pityriasis gymnocephala).
Molec. Phylog. Evol. 39: 893-898.
- Moyle,
R. G., R. T. Chesser, R. T. Brumfield, J. G. Tello, D. J. Marchese, and
J. Cracraft. 2009. Phylogeny and phylogenetic classification of the
antbirds, ovenbirds, woodcreepers, and allies (Aves: Passeriformes:
Furnariides). Cladistics 25: 386-405.
- Moyle,
R.G., M.J. Andersen, C.H. Oliveros, F.D. Steinheimer, and S. Reddy.
2012. Phylogeny and biogeography of the core Babblers (Aves:
Timaliidae). Syst. Biol. 61: 631-651.
- Ohlson,
J.I., R.O. Prum, and P.G.P. Ericson. 2007. A molecular phylogeny of the
cotingas (Aves: Cotingidae). Molec. Phylog. Evol. 42: 25-37.
- Norman,
J.A., P.G.P. Ericson, K.A. Jønsson, J. Fjeldså, and L.
Christidis. 2009. A multi-gene phylogeny reveals novel relationships
for aberrant genera of Australo–Papuan core Corvoidea and polyphyly of
the Pachycephalidae and Psophodidae (Aves: Passeriformes). Molec.
Phylog. Evol. 52: 488–497.
- Nunn, G.B., and S.E. Stanley. 1998. Body size effects and rates of cytochrome b evolution in tube-nosed seabirds. Molec. Biol. Evol. 15: 1360-1371.
- Paton, T.A., A.J. Baker, J.G. Groth, and G.F.
Barrowclough. 2003. RAG-1 sequences resolve phylogenetic relationships
within charadriiform birds. Molec. Phylog. Evol. 29:
268-278.
- Penhallurick,
J. and M. Wink. 2004. Analysis of the taxonomy and nomenclature of the
Procellariiformes based on complete nucleotide sequences of the
mitochondrial cytochrome b gene. Emu 104: 125-147.
- Prum, R.O. 1988. Phylogenetic
interrelationships of the barbets (Aves: Capitonidae) and toucans
(Aves: Ramphastidae) based on morphology with comparisons to DNA-DNA
hybridization. Zool. J. Linnaean Soc. 92: 313-343.
- Prum, R.O. 1993. Phylogeny, biogeography, and
evolution of the broadbills (Eurylaimidae) and asities (Philepittidae)
based on morphology. Auk 110: 304-324.
- Reddy, S., and J. Cracraft. 2007. Old World Shrike-babblers (Pteruthius) belong with New World Vireos (Vireonidae). Molec. Phylog. Evol. 44: 1352-1357.
- Reddy,
S., A. Driskell, D.L. Rabosky, S.J. Hackett, and T.S. Schulenberg.
2012. Diversification and the adaptive radiation of the vangas of
Madagascar, Proc. Royal Soc. B 279: 2062-2071.
- Rheindt,
F.E., and J.J. Austin. 2004. Major analytical and conceptual
shortcomings in a recent taxonomic revision of the Procellariiformes —
a reply to Penhallurick and Wink (2004). Emu 105: 181-186.
- Schodde, R., and I.J. Mason. 1999. Directory
of Australian Birds. CSIRO Publishing, Canberra.
- Sefc, K.M., R.B. Payne, and M.D. Sorenson. 2003. Phylogenetic relationships of African sunbird-like warblers: Moho (Hypergerus atriceps), Green Hylia (Hylia prasina) and Tit-hylia (Pholidornis rushiae). Ostrich 74: 8–17.
- Sibley, C.G. 1996. Distribution and Taxonomy
of Birds of the World. On diskettes, Windows version 2.0. Ibis
Publishing, Vista, CA.
- Sibley, CG., and J.E. Ahlquist. 1990.
Phylogeny and Classification of Birds: A Study in Molecular Evolution.
Yale Univ. Press, New Haven, CT.
- Sibley, C. G., and B.L. Monroe, Jr. 1990.
Distribution and Taxonomy of Birds of the World. Yale Univ. Press, New
Haven, CT.
- South
American Checklist Committee (SACC). 2006–current. Checklist of the Birds
of South America. On-line; J.V. Remsen, Jr., et al., eds.
- Spellman,
G.M., A. Cibois, R.G. Moyle, K. Winker, and F.K. Barker. 2008.
Clarifying the systematics of an enigmatic avian lineage: what is a
bombycillid? Molec. Phylog. Evol. 49: 1036-1040.
- Tello,
J.G., R.G. Moyle, D.J. Marchese, and J. Cracraft. 2009. Phylogeny and
phylogenetic classification of the tyrant flycatchers, cotingas,
manakins, and their allies (Aves: Tyrannides). Cladistics 25: 1-39.
- van Tuinen, M., D.B. Butvill, J.A.W. Kirsch,
and S.B. Hedges. 2001. Convergence and divergence in the evolution of
aquatic birds. Proc. Royal Soc. London (Biol. Sci. ) 268: 1345-1350.
- Voelker,
G., and J.E. Light. 2011. Palaeoclimatic events, dispersal and
migratory losses along the Afro-European axis as drivers of
biogeographic distribution in Sylvia warblers. BMC Evol. Biol. 11:163.
- Yuri,
T., and D.P. Mindell. 2002. Molecular phylogenetic analysis of
Fringillidae, "New World nine-primaried oscines" (Aves: Passeriformes).
Molec. Phylog. Evol. 23: 229-243.
- Zuccon, D., A. Cibois, E. Pasquet, and P.G.P.
Ericson. 2006. Nuclear and mitochondrial sequence data reveal the major
lineages of starlings, mynas and related taxa. Molec. Phylog. Evol. 41: 333-344.
|
|
|
|